
CDPWN MITIGATION BYPASS – © 2020 ARMIS, INC.

Bypassing Mitigations While
Taking Over Enterprise-IoT
Devices in Broadcast Attacks

Barak Hadad
Ben Seri

Table of Contents

Introduction 3

Who we are 4

Exploit mitigations in CDPwn-vulnerable devices 5

Background on ASLR 5

Linux Mainline ASLR implementation 6

ASLR bypass - Reduce exploitation time 8

Exploitation time for Nexus switches (NX-OS) 9

Exploitation time for Cisco 88xx VoIP phones 9

NX-OS Stack Overflow 10

Recap - CVE-2020-3119 - Stack Overflow in the Power Request TLV 10

ASLR characteristics for the CDP daemon in NX-OS 11

Making the world a better P 12

PolyROP - ASLR based switch case 12

Finding MultiROP gadgets 15

NX-OS Stack Overflow ASLR bypass results 16

Cisco VoIP Phones Stack Overflow 17

Recap - CVE-2020-3111 - Cisco VOIP Phones Stack Overflow in PortID TLV 17

ASLR characteristics for the CDP daemon on Cisco VOIP phones 17

One exploit to rule them all (ASLR options) 17

Arm32 PolyROP - Take 1 - Register branching 18

Arm32 PolyROP - Take 2 - Stacking ASLR options 20

Cisco VOIP phones Stack Overflow ASLR bypass results 21

Conclusion 22

CDPWN MITIGATION BYPASS – 2

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

Introduction

In February of 2020, Armis Labs disclosed the discovery of 5 zero-day vulnerabilities affecting a
wide array of Cisco products, including Cisco routers, switches, IP Phones, and IP cameras. Four
of the vulnerabilities enable Remote Code Execution (RCE). The latter is a Denial of Service (DoS)
vulnerability that can halt the operation of entire networks.

As a group, CDPwn affects a wide variety of devices with at least one RCE vulnerability affecting
each device type. By exploiting CDPwn, an attacker can take over an organizations’ network
(switches and routers), its telecommunication (IP Phones), and even compromise its physical
security (IP Cameras).

Dubbed CDPwn, the vulnerabilities reside in the processing of CDP (Cisco Discovery Protocol)
packets, impacting firmware versions released in the last 10 years, and are an example of the fragility
of a network’s security posture when confronted with vulnerabilities in proprietary Layer 2 protocols.

On October 20, 2020, the NSA published a report identifying the Top 25 vulnerabilities that are
currently being consistently scanned, targeted, and exploited by Chinese state-sponsored
hacking groups. One of the five RCEs in CDPwn (CVE-2020-3118) was identified on this list,
stressing the importance of these vulnerabilities, and the need to mitigate their potential effects.

While the criticality of the discovered RCEs was not in question, the exploitability of them
remained something we felt the need to prove. Unlike some embedded devices, Cisco does
employ some exploit mitigations in the affected products, such as ASLR (address space layout
randomization) and others. Overcoming ASLR, for example, with the RCE memory corruption
vulnerabilities found in CDPwn can be quite tricky since CDP is primarily a one-directional
protocol, meaning the likelihood of discovering an additional information leak vulnerability that
would assist in the bypass can prove challenging.

This document details an ASLR bypass technique that we developed to exploit the CDPwn
vulnerabilities successfully without the need for additional information leak vulnerabilities. Since some
of the vulnerabilities can be sent over a broadcast packet, a blind ASLR bypass technique was also
developed that can allow an attacker to take control over multiple vulnerable devices simultaneously.

Although ASLR can be effective mitigation to prevent a memory corruption vulnerability from reaching
code-execution, its effectiveness highly depends on the specifics of its implementation. The basic
purpose of ASLR is to add randomization to the layout of the address space, so an attacker has to
guess the layout while trying to exploit a vulnerability. So by design, ASLR alone can’t prevent
memory corruption from leading to code execution, only slow it down. Finding techniques to speed up
the guessing attempts of the memory layout can render ASLR practically mute.

CDPWN MITIGATION BYPASS – 3

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

https://media.defense.gov/2020/Oct/20/2002519884/-1/-1/0/CSA_CHINESE_EXPLOIT_VULNERABILITIES_UOO179811.PDF
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-3118

This document will showcase three implementations of this technique:

1. Cisco Nexus Switches - Reduce the exploitation time by a factor of 15.
2. Cisco VOIP phones attempt #1 - Reduce the exploitation time by a factor of 5.
3. Cisco VOIP phones attempt #2 - One exploit that works for all ASLR options in parallel

Who we are

Armis Labs is the Armis research team focused on mixing and splitting the atoms that comprise
the IoT devices that surround us - be it a smart personal assistant, a benign-looking printer, a
SCADA controller, or a life-supporting device such as a hospital bedside patient monitor.

Our previous research includes:

● EtherOops: Exploit Utilizing Packet-in-Packet Attacks on Ethernet Cables To Bypass
Firewalls & NATs. The technical whitepaper for this research can be found here:

○ EtherOops: Bypassing Firewalls and NATs By Exploiting Packet-in-Packet Attacks
in Ethernet

● CDPwn: 5 Zero-Day vulnerabilities in various implementations of Cisco’s CDP protocol,
used by a wide array of their products. The technical whitepaper for this research can be
found here:

○ CDPwn: Breaking the discovery protocols of the Enterprise-of-Things
● URGENT/11: Zero Day vulnerabilities impacting VxWorks, the most widely used

Real-Time Operating System (RTOS). The technical whitepaper for this research can be
found here:

○ URGENT/11: Critical vulnerabilities to remotely compromise VxWorks
● BLEEDINGBIT: Two chip-level vulnerabilities in Texas Instruments BLE chips, embedded

in Enterprise-grade Access Points. The technical whitepaper for this research can be
found here:

○ BLEEDINGBIT - The hidden attack surface within BLE chips
● BlueBorne: An attack vector targeting devices via RCE vulnerabilities in Bluetooth stacks

used by over 5.3 Billion devices. This research was comprised of 3 technical whitepapers:
○ BlueBorne - The dangers of Bluetooth implementations: Unveiling zero-day

vulnerabilities and security flaws in modern Bluetooth stacks
○ BlueBorne on Android - Exploiting an RCE Over the Air
○ Exploiting BlueBorne in Linux-Based IoT devices

CDPWN MITIGATION BYPASS – 4

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

https://www.armis.com/etheroops/
https://info.armis.com/rs/645-PDC-047/images/Armis-EtherOops-TWP-20200805-1.pdf
https://info.armis.com/rs/645-PDC-047/images/Armis-EtherOops-TWP-20200805-1.pdf
https://www.armis.com/cdpwn/
https://info.armis.com/rs/645-PDC-047/images/Armis-CDPwn-WP.pdf
https://www.armis.com/urgent11/
https://go.armis.com/hubfs/White-papers/Urgent11%20Technical%20White%20Paper.pdf
https://armis.com/bleedingbit
https://go.armis.com/bleedingbit
https://armis.com/blueborne
http://go.armis.com/blueborne-technical-paper
http://go.armis.com/blueborne-technical-paper
http://go.armis.com/android-security-vulnerability
http://go.armis.com/blueborne-linux-technical-paper-success

Exploit mitigations in CDPwn-vulnerable devices

We’ve chosen two study cases devices on which we attempted the bypass of exploit mitigations
on CDPwn-vulnerable devices. The first is a Cisco Nexus switch, vulnerable to CVE-2020-3119, a
stack overflow in the processing of the Power Request TLV in the CDP daemon, and the second
is a Cisco 88xx VoIP phone, vulnerable to CVE-2020-3111, a stack overflow in the processing of
the Port ID TLV in the VoIP’s CDP daemon.

The most potent exploit mitigation that exists in both of these devices is ASLR. As we’ll see
shortly, the ASLR used by these devices is Linux’s default 32-bit ASLR implementation that is
known to have some inherent weaknesses. Knowing this, we set out to see how we can leverage
these weaknesses to bypass this exploit mitigation in these devices.

But first, some background.

Background on ASLR

ASLR stands for Address Space Layout Randomization. When trying to exploit memory corruption
vulnerabilities the memory layout of the targeted process is required in order to reach code
execution. ASLR introduces randomness to the process memory layout that makes these types of
exploitations harder. An attacker will need to find some info-leak vulnerability in order to
determine the chosen memory layout of the targeted process, use an alternative method to
bypass it, or reduce the randomness that ASLR has introduced.

A process that wishes to take advantage of ASLR, needs to use an operating system that
supports it. It also needs to be compiled in such a way that allows the OS to later relocate the
process segments to the chosen memory layout. In GCC for example, this requires the use of the
Position Independent Code (PIC) flag for shared libraries or Position Independent ELF (PIE) flag
for the main executables.

In Linux, for example, there is some overhead (~15%) to a process’ startup time when using PIE, so
certain Linux binaries will not be compiled with it. However, in both CDP daemons found on
vulnerable devices, the PIE flag is in use, and thus ASLR is supported in them.

The concept of ASLR originated with the Linux PaX project in July 2001. It was designed as a
patch to the mainline Linux Kernel, but a slightly different more permissive implementation was
eventually merged into Linux mainline kernel. The grsecurity project includes PaX patches, along
with other kernel patches that aim to provide greater kernel security and auditing capabilities
against vulnerability exploitation.

CDPWN MITIGATION BYPASS – 5

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

https://docs.google.com/document/d/1WYevtue_n98gSOlzqakCUPjSafXaaynBLxo_wCJpWCI/edit#heading=h.cik1cgfp4u58
https://access.redhat.com/blogs/766093/posts/1975803

The strength of the ASLR implementation is determined by the amount of entropy that is
introduced to the system using it. For example, if we have an exploit that returns to system (in
libc) and the address of the system function has only one random bit, one try has a 50% chance
of success but with just four tries, we raise the success rate to 93.75%. If the address has one
byte of randomness in the address, after one try there is only 1/256 success rate and to get the
success rate above 90%, an attacker will need ~600 tries!

Linux Mainline ASLR implementation

To start analyzing ASLR from somewhere, we need to think -- which part of a process is most
likely to be randomized in the address space? We know that shared libraries, for example, are
relocatable ELF objects, to support being loaded into different processes, with different address
spaces. So we can analyze ASLR by analyzing the loading sequence of shared libraries while
loading a certain PIE executable. To do that, we will examine the ls command:

The ls executable is dynamically linked, meaning the shared objects locations are determined on
execution and the interpreter is ld-linux. Following an strace log when running ls reveals the
following:

CDPWN MITIGATION BYPASS – 6

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

PaX Tux - It has an ax and shield so it’s probably secure

bash# file /bin/ls
/bin/ls: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically
linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 3.2.0,
BuildID[sha1]=9567f9a28e66f4d7ec4baf31cfbf68d0410f0ae6, stripped

execve("/bin/ls", ["/bin/ls"], 0x7ffdc18408c0 /* 29 vars */) = 0
brk(NULL) = 0x55998e7d6000
...

openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3

The trace starts with execve. At this point the kernel loads the ls and ld.so binaries into the new
process memory. Right after that, ld.so loads the needed library, declared in the ls ELF file. To do
so, it uses mmap to allocate memory for each of the libraries segments (read/write section for the
data segments, read/execute for the code segment, etc.). So, what is actually implementing
ASLR in this flow?

The answer is in the kernel. Looking at an mmap implementation in a recent Kernel leads to the
conclusion that mmap allocations are sequential, starting from mmap_base
(mmap_compat_base for 32-bit processes).

That base for mmap memory allocation is randomized on process start, which occurs inside the
above call to execve -- which also deals with implementing ASLR for the various segments of the
main executable itself. The base for mmap is chosen using the function arch_pick_mmap_layout.
The function initializes both process variables - mmap_base (used for 64-bit processes) and
mmap_compat_base (used for 32-bit processes):

CDPWN MITIGATION BYPASS – 7

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\260\34\2\0\0\0\0\0"..., 832) = 832
fstat(3, {st_mode=S_IFREG|0755, st_size=2030544, ...}) = 0
mmap(NULL, 4131552, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7f0272fb3000
mprotect(0x7f027319a000, 2097152, PROT_NONE) = 0
mmap(..., 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1e7000) = ...
mmap(..., 15072, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = ...
close(3)
...

void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
{
...

arch_pick_mmap_base(&mm->mmap_base,
 &mm->mmap_legacy_base,

arch_rnd(mmap64_rnd_bits), task_size_64bit(0),
rlim_stack);

#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES

/*
 * The mmap syscall mapping base decision depends solely on the
 * syscall type (64-bit or compat). This applies for 64bit
 * applications and 32bit applications. The 64bit syscall uses
 * mmap_base, the compat syscall uses mmap_compat_base.
 */
arch_pick_mmap_base(&mm->mmap_compat_base,

 &mm->mmap_compat_legacy_base,
arch_rnd(mmap32_rnd_bits), task_size_32bit(),
rlim_stack);

#endif
}

Both functions call arch_pick_mmap_base using arch_rnd to determine the random bits of the
mmap_base. The parameter to arch_rnd is mmap64_rnd_bits (20 by default) for 64-bit
processes and mmap32_rnd_bits (8 by default) for 32-bit processes. arch_rnd randomizes the
requested number of bits and aligns the result to the PAGE_SHIFT (4KB by default):

Since our target devices both use the 32-bit version of ASLR in Linux, the key takeaways we can
deduce from the above logic (in the default settings, used by our target devices) is this:

● The difference between two ASLR options is the same for all loaded shared libraries since
only the base is randomized

● The default number of random bits for 32-bit processes is 8 and the page alignment is of
4 KB so the max difference between two ASLR options is 1MB.

● There is no randomization for the gap size between adjacent shared objects. The
entire process memory is just shifted between ASLR options, meaning that any
info-leak that reveals an address in any shared object reveals the addresses of all
shared objects, including libc!

ASLR bypass - Reduce exploitation time
In the case of our target device, there are only 256 options for the memory layout of the target
process (the CDP daemon). By systematically trying a certain ASLR option again and again, an
attacker has chance for successful exploitation on each attempt. The average number P = 1

256

of tries until successful exploitation is .2561
P =

As stated earlier, by design, ASLR is not meant to prevent code-execution all together. If an
attacker has the ability to trigger a memory corruption vulnerability numerous times, he can
simply brute force his way, until he stumbles on the correct ASLR shift. The question that remains
is -- how much time would it take to bypass ASLR in the target devices, only by trying again and
again?

CDPWN MITIGATION BYPASS – 8

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

static unsigned long arch_rnd(unsigned int rndbits)
{

if (!(current->flags & PF_RANDOMIZE))
return 0;

return (get_random_long() & ((1UL << rndbits) - 1)) << PAGE_SHIFT;
}

Linux users can change the number of random bits from user mode by setting:

● /proc/sys/vm/mmap_rnd_bits - Changes the number of random bits for 64-bit processes
● /proc/sys/vm/mmap_rnd_compat_bits - Changes the number of random bits for 32-bit

processes

Exploitation time for Nexus switches (NX-OS)

NX-OS is the operating system used by Cisco Nexus switches. Generally speaking, it is a Linux
operating system with some modifications.

The CDP daemon running in the Nexus switches (cdpd) is re-launched every time it crashes
(which would occur if the wrong ASLR shift was guessed). However, the Nexus switch reboots if
the cdpd daemon crashes more than two times in a five minute period and takes approximately
3.5 minutes to boot.

Thus, the average time for a successful attack without crashing the device is:

 / Attempts_without_crash × T ime_between_attempts 256 / 2 ×5 640 Minutes ≈ 10.5 Hours1
P = =

There is a reverse linear correlation between P and the exploitation time.

Exploitation time for Cisco 88xx VoIP phones

The 88xx VoIP phones crash each time the CDP daemon crashes and take about a minute to
reboot. Thus, the average time for a successful attack is ~ 256 minutes = 4 Hours, but during this
time, the device is in a constant boot loop.

So despite the fact ASLR is not efficient in our target device to prevent exploitation from being
practical (an attacker can wait a couple of hours to get to code execution if needed...), it will
require a lengthy process that will probably be detected by IT or any other user that notices the
continuous reboot of the targeted device.

The takeaway from this section is that to make this brute force attack more practical, we need to
find a way to make P bigger.

CDPWN MITIGATION BYPASS – 9

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

P NX-OS average exploitation
time (~)

VOIP average exploitation
time (~)

1
256 10:30 Hours 4 Hours

5
256 02:15 Hours 1 Hour

10
256 01:00 Hours 25 Minutes

15
256 40 Minutes 17 Minutes

NX-OS Stack Overflow

Recap - CVE-2020-3119 - Stack Overflow in the Power Request TLV

The vulnerability resides in the processing function for Power Request TLVs - a CDP TLV frame
made for negotiation of Power-over-Ethernet parameters.

The Power Request TLV contains a list of requested power specifications. The list’s 16-bit length
field is not validated correctly and is used to copy the list to a fixed size buffer allocated on the
stack and a fixed offset from an additional pointer (a1, which is also allocated on the stack):

There are no stack cookies in use in this process (Why???), so exploiting this function gives the
attacker two primitives:

1. Code execution: Using the stack overflow, the attacker overwrites the return address and
can jump to arbitrary code.

2. Write-What-Where: By setting a1, the attacker can write arbitrary data to arbitrary
addresses.

In the general case of stack overflow exploitation, when DEP (Data Execution Prevention) is in
use, one would create an ROP (Return Oriented Programming) chain that will set-up a call to libc’s
system function, using an ROP gadget that will call system with some command to execute (that
can be set up on an overwritten stack variable). However, since the Write-What-Where primitive is
triggered in this flow before code execution is achieved, the a1 register needs to be pointed to a
valid read/write memory so that the process will not crash.

CDPWN MITIGATION BYPASS – 10

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

int length = ntohs(pwr_pkt_2->length);
...
if (length > 0) {
 current_offset = &pwr_pkt_2->int8;
 counter = 1;
 do {
 // Overflow - temp is a buffer of size 0x40 at the top of the stack frame
 temp[counter - 1] = ntohl(*current_offset);
 ...

 // Write, What, Where primitive since a1 is on the stack

 a1->levels[counter] = ntohl(*current_offset);
 ++current_offset;
 ++counter;
 } while (counter != length + 1);
}

Decompiled code snippet from the CDP parsing function

Such memory space is found in the data section of shared objects. Combined with this primitive,
a simple ROP chain can be used to call the system function with an attacker-defined command.

Putting it all together, the following ROP chain can be constructed, when ASLR is disabled:

ASLR characteristics for the CDP daemon in NX-OS

Examining the ASLR characteristics specifically of the CDP daemon in NX-OS reveals that in fact
the amount of entropy in the ASLR implementation is quite limited. Despite the fact the OS is a
64-bit Windriver Linux, the CDP daemon is a 32-bit process, so it can’t utilize the full power of
64-bit ASLR and thus the 32-bit ASLR is in use.

Calling ldd repeatedly for the cdpd daemon and examining the shared objects addresses reveals
these expected key features:

● There are only 256 ASLR options (The default mmap32_rnd_bits = 8 is used)
● ASLR options differ by 4KB (The default PAGE_SHIFT = 4KB is used)
● The space between adjacent libraries is at most 4KB (As expected)

CDPWN MITIGATION BYPASS – 11

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

Offset(from $esp) Variable Data

-0x40 temp

0x00 Saved registers

0x04 Return address ROP gadget:
 pop eax
 ret

0x08 a1 Some read/write memory, for example,
the data section of some shared object

0x0C Call to system Address of libc system function

0x10 Next ROP gadget

0x14 Argument to system Address of the command to execute on
the stack

0x18 Command to execute ("echo CDPwn")

The most straightforward way to bypass ASLR will be to find some information leak vulnerability
that will tell us which ASLR option was chosen. That would be ideal but since CDP is mostly
one-directional, it seems unlikely to find a vulnerability that can lead to a layer-2 packet being
sent back to the attacker with some leak of the memory layout.

Making the world a better P

We needed to find a way to make P (The probability one exploit attempt succeeds) higher or
completely remove the randomness introduced by the ASLR. We came up with a new technique
to better the odds of reaching code execution, by finding addresses that point to a valid ROP
gadget for multiple ASLR options at a time.

PolyROP - ASLR based switch case

The idea is to find addresses that point to a valid ROP gadget for multiple ASLR options. For
example, if we examine the libc binary and look at these 3 addresses:

The above addresses align with three different ASLR options:

● ASLR option with offset 0x00 - 0x6F314 (Target address)
● ASLR option with offset 0x08 - 0x6F314 - (0x08 * PAGE_SHIFT) = 0x6F314 + (0x08 *

0x1000) = 0x67314
● ASLR option with offset 0x45 - 0x6F314 - (0x45 * PAGE_SHIFT) = 0x6F314 - (0x45 *

0x1000) = 0x2A314

If we set this address (0x6F314) as the overwritten return address using the stack overflow, we
can make an ROP chain that will work for multiple ASLR options. The following drawing tries to
illustrate this:

CDPWN MITIGATION BYPASS – 12

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

Gadget A B C

Address 0x2A314 0x67314 0x6F314

Code 2a314: pop %ebp
2a315: ret

67314: pop %ebx
67315: pop %esi
67316: ret

6f314: jmp 0x6f222
...

6f222: add $0x10,%esp
6f225: pop %ebx
6f226: pop %esi
6f227: pop %edi
6f228: pop %ebp
6f229: ret

Stack diff 4 (One pop) 8 (Double pop) 32 (0x10 + 4 * 4)

This first ROP gadget will act as a multigadget, meaning it will run a different code for each of the
supported ASLR options (and will crash for any other option). The multigadget presented above
was chosen in such a way that each of the individual gadgets impacts the stack in a different way.
So after the multigadget is executed, each ASLR option can run a separate ROP chain, set up in
the stack-frames that follow the chosen gadget. The ROP flow looks something like this:

CDPWN MITIGATION BYPASS – 13

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

Here is an example of an ROP based switch case for two ASLR options - the same address
triggers a different gadget on each ASLR option:

CDPWN MITIGATION BYPASS – 14

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

Offset
(from
$esp)

Variable Gadget
Address

ASLR option 1 (0x45) ASLR option 2 (0x08)

-0x40 temp

0x00 Saved
registers

0x04 Return
address

0x0006F314 POP_AND_RET POP_8_AND_RET

0x08 a1 0x01080000 Read/write memory in the data section of some
shared object

0x0C 0x0100AA00 POP_20_AND_RET

0x10 0x0103DB00 Libc system function
address for ASLR option
2

0x14

0x18 0x01080500 Argument for system
function call. Read/write
memory in the data
section of some shared
object plus needed
offset to the command
start.

... ...

0x2C 0x01000B00 Libc system function
address for ASLR option 1

0x30

With this simple multigadget, this exploit will work with a probability of - which will result in a2

256

50% decrease in exploitation time. We wrote a script to automatically find multi-gadget
addresses and arrange them together to a PolyROP exploit.

Finding MultiROP gadgets

To test the limits of this PolyROP technique, we needed to find as many ROP gadgets as we
could. These would later be used to mix and match with different ASLR options. To do so, we
mapped all ret instructions and went up until we hit a memory changing opcode:

Since our shellcode will end with a call to system, we don’t have to restore execution. This means
we can tolerate opcodes that alter register values. For each ROP gadget, we needed to count
any changes to the stack for later use in the multigadget switch case. For example, in the above
gadget, the stack is incremented by 0 for address 0x6f2dd, 4 for address 0x6f2dc, 8 for address
0x6f2db, and so on. In a similar approach, we also registered all jmp instructions that point to a
valid ROP gadget.

CDPWN MITIGATION BYPASS – 15

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

0x34 0x01080500 Argument for system
function call. Read/write
memory in the data
section of some shared
object plus needed offset
to the command start.

0x38 Command to execute ("echo CDPwn; rm -rf /")

...

Note: The exploit above leverages the write-what-where primitive for simplification purposes. It
does not depend on it to reach controlled code execution

6f2d2: mov %esi,(%eax) # Invalid gadget address since memory is used
6f2d4: add $0x10,%esp # Valid gadget address
6f2d7: mov %ecx,%eax # Valid gadget address
6f2d9: pop %ebx # Valid gadget address
6f2da: pop %esi # Valid gadget address
6f2db: pop %edi # Valid gadget address
6f2dc: pop %ebp # Valid gadget address
6f2dd: ret # Valid gadget address

Ultimately, using the above technique on libc library used by the CDP daemon, led us to find
~800,000 addresses that point to valid ROP gadgets for multiple ASLR options. 47 of those were
simultaneously valid for 15 different ASLR options.

NX-OS Stack Overflow ASLR bypass results

Using the above-mentioned technique, we were able to develop an exploit that works for 15
ASLR options, reducing the average exploit attempts number to ~17 (from 256) making the
exploitation time ~20 Minutes if we are allowed to crash the device and ~40 Minutes if we can’t
crash it (two attempts every five minutes).

CDPWN MITIGATION BYPASS – 16

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

Cisco VoIP Phones Stack Overflow

Recap - CVE-2020-3111 - Cisco VOIP Phones Stack Overflow in PortID TLV

The stack overflow vulnerability is in the parsing of PortID TLV (0x03). There are no boundary
checks on the length of this TLV and the value is copied to a fixed size buffer on the stack.

Just as with the previous vulnerability, a simple ROP chain can be made to exploit this
vulnerability and call the system function with the argument taken directly from the stack. But,
similar to NX-OS, the Cisco VOIP phones also use ASLR.

ASLR characteristics for the CDP daemon on Cisco VOIP phones

In Cisco’s 88xx VoIP phones the OS is Linux and the CPU is 32-bit Arm. Despite the different CPU
architecture, the ASLR characteristics for the CDP daemon are similar to those of the NX-OS
switch, since both use Linux’s default ASLR implementation in 32-bit processes.

Executing the cdp daemon repeatedly and examining the shared objects addresses reveals
these key features:

● There are only 256 ASLR options (The default mmap32_rnd_bits = 8 is used)
● ASLR options differ by 4KB (The default PAGE_SHIFT = 4KB is used)
● The space between adjacent libraries is at most 4KB (As expected)
● Threads are used and since the thread stack is allocated using mmap, it’s in a constant

offset from the shared libraries. The threads stack size is 8 MB which makes a great
location for write operations since the max ASLR shift is 1 MB.

As with the Nexus switch, since CDP is mostly one-directional, searching for info-leaks seemed
like an impractical option.

One exploit to rule them all (ASLR options)

Let’s examine the epilogue of the overflowed function:

CDPWN MITIGATION BYPASS – 17

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

 case 3: # Port ID
 len = ntohs(portid_tlv_len);
 if (len > 3)
 {
 // No check that len is lower than the size of buf (stack variable)
 memcpy(buf, v10 + 4, len - 4);
 ..

Decompiled code snippet from cdpRcvParse

In this function epilogue, the SP itself is restored from the stack, before the function returns to its
caller (by popping the return address from the stack to PC). So to control the PC, we also need to
overwrite the stack pointer. In the Cisco Nexus case, our PolyROP technique relied on a ROP
chain that started from a multigadget, but then progressed to multiple chains per ASLR option.
Like all segments of the target process, the stack itself is also located in a randomized address,
so we can’t know what value the SP should have to be able to use the stack for any type of ROP
chain. Meaning the only shot we have to gain code execution is through a single ROP gadget.

Arm32 PolyROP - Take 1 - Register branching

To overcome the above limitation, an attacker would need to find a gadget that jumps to a
different attacker-controlled location, based on the chosen ASLR option, without relying on any
stack data to continue the ROP chain (since we unwillingly overwrite SP itself). In the above
function epilogue we notice that 8 registers (other than SP and PC) are overwritten by our
overflow. Using these registers as a way to continue the code flow after our single ROP gadget,
was an idea worth exploring.

The CPU architecture of the device is ARM-32 and the BLX opcode can be used to achieve this
goal. BLX R* jumps to the address pointed by the selected register—so, by finding an address
that branches to different registers on different ASLR options, an attacker could have one call to a
fully controlled function address.

An example for such an address is 0x**9f0 of libc:

Gaining controlled code execution with a single function call might seem a bit far-fetched. The
idea was to use this single function call to restart the CDP parsing thread by calling the first
function in this thread (dpConficCmdThrd). When the thread is restarted, a second attempt to
exploit the vulnerability can be taken, only this time location of the the stack would be
predictable, since the SP was overwritten in the first attempt. Selecting a valid stack address for
the different ASLR options is also doable, since the original stack is 8MB long, while the
maximum ASLR shift is only 1MB.

CDPWN MITIGATION BYPASS – 18

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

SUB SP, R11, #0x28 ;
LDMFD SP, {R4-R11,SP,PC} ;

Address 0x329F0 0xDB9F0 0xFF9F0

Code BLX R10 BLX R8 BLX R6

An exploit scenario would look like this:

1. Trigger the stack overflow that will move the stack to a new location and restart the CDP
parsing thread.

2. Trigger the stack overflow a second time, this time the exact location of the stack is
known and a full ROP chain can be used..

When sending the second packet, the attacker knows the exact location of the stack, so a simple
PolyROP can be used (same as the one made for the NX-OS).

This technique is limited by the number of registers under the attacker’s control (R4-R11) so the
theoretical limit here is 7 options → Not good enough.

CDPWN MITIGATION BYPASS – 19

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

Arm32 PolyROP - Take 2 - Stacking ASLR options

Further examining the overflown stack, another primitive was discovered - A relative write of
0x154 bytes, of which 0xF3 bytes are attacker-controlled. This can be achieved by overflowing
stack variables that contain pointers that are later used to copy some attacker-controlled data
from the input packet. The relevant stack variables are located before the end of the stack-frame,
and so the stack pointer, and PC can be left untouched, and the CDP process will not crash. The
vulnerable memcpy call:

● port and entry are attacker-controlled using the stack overflow.
● cdpCache is a global variable in the .bss section of the cdp binary.
● main_buffer is attacker-controlled from offset 0x61.

By setting port and entry correctly, one could write almost anywhere in the process memory.
Also, since this is a relative write primitive, it can be used in a deterministic fashion, ignoring
ASLR all together. It’s important to note that there is also an integer overflow in the above line,
making any offset writable using this primitive.

With the help of this primitive, we could prepare a stack of ROP chains for every ASLR option in
the process memory and eventually pivot the stack to an absolute address. Since the write is
relative and the pivot is absolute, the combination completely negates the ASLR randomness,
making the exploitation success rate 100%.

Consider the following scenario:

1. The attacker writes the stack of ROP chains for ASLR option 1 in offset -0x4000, the stack
ROP for ASLR option 2 in offset -0x3000 and stack ROP for ASLR option 3 in offset
-0x2000. All of these writes are achieved using the relative write primitive without
overwriting the stack pointer or the PC. Each write is achieved using one specially crafted
CDP packet.

2. The attacker sends another specially crafted CDP packet, this time, overwriting the stack
pointer with an absolute address. That absolute address holds the correct stack for the
current ASLR option because the stacks were written using a relative write.

CDPWN MITIGATION BYPASS – 20

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

memcpy(&cdpCache + 0x7F8 * port + 0x154 * entry, main_buffer, 0x154);

Once the stack is pivoted, all addresses are known since the ROP chain on the pivoted stack is
built for the specific ASLR option that triggered it.

Cisco VOIP phones Stack Overflow ASLR bypass results

Using the above-mentioned technique, we were able to develop an exploit that works for all
ASLR options without crashing the device even once. Moreover, this vulnerability can be
exploited using an Ethernet broadcast packet. This means an attacker could send 257 broadcast
packets and take control over all vulnerable VoIP phones in the LAN in parallel.

CDPWN MITIGATION BYPASS – 21

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

Conclusion

This exploit development experiment underlines the fragility of exploit mitigations. On paper, they
may seem quite effective. Sending a blind CDP packet that will trigger a memory corruption, to a
device with a random address space layout can sound unexploitable. However, leveraging the
limitations in the randomness of this mitigation, as found in the vulnerable Cisco devices,
combined with strong primitives that arise from the vulnerability itself (relative write, for example),
can render the ASLR mitigation useless.

From a more high-level perspective, understanding that the CDPwn vulnerability may be turned
into an extremely powerful exploit, that has the ability to remotely, without any authentication or
user interaction, take over all vulnerable VoIP phones in an organization’s network, in a
broadcast attack that works by simply sending 257 packets to the network is quite astonishing.
This type of ability is remarkable since the attacker doesn’t even have to do any reconnaissance
steps to find target devices within the network. Once the VoIP phones have been attacked, the
executed shellcode can simply connect back to an attacker’s C&C server, and await further
instructions.

VoIP phones have already been targeted in attacks in the wild, either in order to preserve a hold
in targeted networks or in order to eavesdrop on corporate calls. The importance to secure these
types of devices, alongside the switches and routers that were also found vulnerable to CDPwn,
becomes even more apparent, considering the effectiveness of a potential exploit that could
leverage these vulnerabilities, as demonstrated in this research.

CDPWN MITIGATION BYPASS – 22

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

https://msrc-blog.microsoft.com/2019/08/05/corporate-iot-a-path-to-intrusion/

ABOUT ARMIS

Armis is the first agentless, enterprise-class security platform to address the new threat
landscape of unmanaged and IoT devices. Fortune 1000 companies trust our unique out-of-band
sensing technology to discover and analyze all managed, unmanaged, and IoT devices—from
traditional devices like laptops and smartphones to new unmanaged smart devices like smart
TVs, webcams, printers, HVAC systems, industrial robots, medical devices, and more. Armis
discovers devices on and off the network, continuously analyzes endpoint behavior to identify
risks and attacks, and protects critical information and systems by identifying suspicious or
malicious devices and quarantining them. Armis is a privately held company and headquartered
in Palo Alto, California.

20201214-1

CDPWN MITIGATION BYPASS – 23

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

